(IJAER) 2015, Vol. No. 10, Issue No. V, November

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

CON-K- NORMAL AND UNITARY POLYNOMIAL MATRICES

*R.Indira, **V.Subharani

^{*}Assistant Professor(Sr.Gr), Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu

**Research Scholar, Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu

ABSTRACT

In this paper we introduce con-k-normal polynomial and con-k-unitary polynomial matrices and study some of its properties.

KEYWORDS:

Con-k-normal polynomial matrix, con-k-unitary polynomial matrix.

I.INTRODUCTION

Let $C^{n \times n}$ be set of all polynomial matrices over the complex field of order n. Let 'k' be a fixed product of disjoint transpositions in $S_n = \{1,2,3...,n\}$ and K be the associated permutation matrix and $K^2 = I$, $K = K^T = K^*$. Any matrix A is said to be con-k-normal if $AA^*K = \overline{KA^*A} = KA^T \overline{A}$ [2], where \overline{A} , A^T , A^* denote conjugate, transpose, conjugate transpose of a matrix A respectively. In this paper, we study the concept of con-k-normal and unitary polynomial matrices as a generalization of k-normal and unitary polynomial matrices [1].

II. CON-K-NORMAL POLYNÓMIAL MATRICES

In this section, we give the definition of the con-k-normal polynomial matrix and some of its basic algebraic properties are studied, as a extension of k-normal polynomial matrices[1].

Definition: 2.1

A con-k-normal polynomial matrix is a polynomial matrix whose coefficient matrices are con-k-normal matrix.

Example: 2.2

 $A(x) = \begin{bmatrix} ix + 1 & 1 \\ 1 & ix + i \end{bmatrix}$ is a con-k-polynomial matrix.

Here, $A(x) = A_1 x + A_0$

106

http://www.ijaer.com

(IJAER) 2015, Vol. No. 10, Issue No. V, November

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

$$= \begin{bmatrix} i & \mathbf{0} \\ \mathbf{1} & i \end{bmatrix} \mathbf{x} + \begin{bmatrix} i & \mathbf{1} \\ \mathbf{0} & i \end{bmatrix}$$
, where A₀, A₁ are con-k-normal matrices.

Theorem: 2.3

If $A(\lambda)$, $B(\lambda) \in C^{n \times n}$ are con-k-normal polynomial matrices and $A(\lambda)B(\lambda) = B(\lambda)A(\lambda)$, then $A(\lambda)B(\lambda)$ is a con-k-normal polynomial matrix.

Proof :

Let $A(\lambda) = A_0 + A_1\lambda + ... + A_n\lambda^n$ and $B(\lambda) = B_0 + B_1\lambda + ... + B_n\lambda^n$ be con-k-normal polynomial matrices, A_0 , A_1 ... A_n and B_0 , B_1 ... B_n are con-k-normal matrices. Also given ,

$$A(\lambda)B(\lambda) = B(\lambda)A(\lambda)$$

$$A(\lambda)B(\lambda) = A_0 B_0 + (A_0 B_1 + A_1 B_0)\lambda + \dots + (A_0 B_n + A_1 B_{n-1} + \dots + A_n B_0)\lambda^n$$

$$B(\lambda)A(\lambda) = B_0A_0 + (B_0A_1 + B_1A_0)\lambda + \dots + (B_0A_n + B_1A_{n-1} + \dots + B_nA_0)\lambda^n$$

Here each coefficient of λ and constants terms are equal.

$$(i.e) A_0 B_0 = B_0 A_0$$

$$A_0B_1 + A_1B_0 = B_0A_1 + B_1A_0$$

$$\Rightarrow$$
 A₀B₁ = B₀A₁ and A₁B₀ = B₁A₀

$$= A_{n}B_{0} = B_{0}A_{n}, A_{1}B_{n-1} = B_{1}A_{n-1}, ..., A_{0}B_{n} = B_{n}A_{0}$$

Now we have to prove $A(\lambda)B(\lambda)$ is con-k-normal polynomial matrix.

$$A(\lambda) B(\lambda) [A(\lambda) B(\lambda)]^* K = A(\lambda) B(\lambda) A^*(\lambda) B^*(\lambda) K$$

= A(\lambda) A^*(\lambda) B(\lambda) B^*(\lambda) K = A(\lambda) A^*(\lambda) K B^T(\lambda) \overline{B(\lambda)}
= K A^T(\lambda) A^*(\lambda) B^T(\lambda) \overline{B(\lambda)} = K A^T(\lambda) B^T(\lambda) B^T(\lambda) \overline{B(\lambda)}
= K [B(\lambda) A(\lambda)]^T [B(\lambda) A(\lambda)] = K [A(\lambda) B(\lambda)]^T [A(\lambda) B(\lambda)]

Hence $A(\lambda) B(\lambda)$ is con-k-normal polynomial matrix.

Theorem:2.4

Let $A(\lambda) \in C^{n \times n}$, then the following conditions are equivalent:

- (i) $A(\lambda)$ is con-k-normal polynomial matrix.
- (ii) $\overline{\mathbf{A}(\lambda)}$ is con- k-normal polynomial matrix.
- (iii) $A^{T}(\lambda)$ is con-k-normal polynomial matrix.
- (iv) $A^*(\lambda)$ is con-k-normal polynomial matrix.

107

http://www.ijaer.com

(IJAER) 2015, Vol. No. 10, Issue No. V, November e-ISSN: 2231-5152/ p-ISSN: 2454-1796

(v) $hA(\lambda)$ is con-k-normal polynomial matrix where h is a real number.

Proof:

(i) <=> (ii): A(λ) is con-k-normal polynomial \Leftrightarrow A(λ) A^{*}(λ) K = K A^T(λ) $\overline{A(\lambda)}$ $\Leftrightarrow \overline{A(\lambda)} A^*(\lambda) K = \overline{K} A^T(\lambda) \overline{A(\lambda)}$ $\Leftrightarrow \overline{\mathbf{A}(\lambda)} \mathbf{A}^{\mathrm{T}}(\lambda)\mathbf{K} = \mathbf{K} \mathbf{A}^{*}(\lambda) \mathbf{A}(\lambda).$ $\Leftrightarrow \overline{A(\lambda)}$ is con-k-normal polynomial matrix. (i) <=> (iii): $A(\lambda)$ is con-k-normal polynomial $\Leftrightarrow A(\lambda)A^*(\lambda) K = KA^T(\lambda)\overline{A(\lambda)}$ $\Leftrightarrow (\mathbf{A}(\lambda) \mathbf{A}^{*}(\lambda) \mathbf{K})^{\mathrm{T}} = (\mathbf{K} \mathbf{A}^{\mathrm{T}}(\lambda) \mathbf{A}(\lambda))^{\mathrm{T}}$ $\Leftrightarrow \mathbf{K}^{\mathrm{T}} \left(\mathbf{A}^{*}(\lambda) \right)^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}(\lambda) = \mathbf{A}^{\mathrm{T}}(\lambda) \left(\mathbf{A}^{\mathrm{T}}(\lambda) \right)^{\mathrm{T}} \mathbf{K}^{\mathrm{T}}$ $\Leftrightarrow \mathbf{K} \,\overline{\mathbf{A}(\lambda)} \,\mathbf{A}^{\mathsf{T}}(\lambda) = \mathbf{A}^{*}(\lambda) \,\mathbf{A}(\lambda) \,\mathbf{K}$ Pre and post multiply by K on both sides, $\Leftrightarrow \overline{A(\lambda)} A^T(\lambda) K$ $= \mathbf{K} \mathbf{A}^{*}(\lambda) \mathbf{A}(\lambda)$ $\Leftrightarrow A^{T}(\lambda)$ is con-k-normal polynomial matrix. (i) <=> (iv): A(λ) is con-k-normal polynomial \Leftrightarrow A(λ)A^{*}(λ) K = KA^T(λ) $\overline{A(\lambda)}$ $\Leftrightarrow (A(\lambda)A^*(\lambda)K)^* = (KA^T(\lambda)\overline{A(\lambda)})^*$ $\Leftrightarrow \mathbf{K}^* (\mathbf{A}^*(\lambda))^* \mathbf{A}^*(\lambda) = (\overline{\mathbf{A}(\lambda)})^* (\mathbf{A}^{\mathrm{T}}(\lambda))^* \mathbf{K}^*$ \Leftrightarrow K A(λ) A^{*}(λ) = A^T(λ) $\overline{A(\lambda)}$ K Pre and post multiply by K on both sides, $\Leftrightarrow A(\lambda)A^*(\lambda) K = KA^T(\lambda) \overline{A(\lambda)}$ $\Leftrightarrow A^*(\lambda)$ is con-k-normal polynomial matrix. (i) $\ll (v)$: A(λ) is con-k-normal polynomial \Leftrightarrow A(λ)A^{*}(λ) K = KA^T(λ) $\overline{A(\lambda)}$ \Leftrightarrow h²(A(λ)A^{*}(λ) K) = h²(KA^T(λ) $\overline{A(\lambda)}$) \Leftrightarrow (h A(λ)) (h A^{*}(λ))K = K(h A^T(λ))(h $\overline{A(\lambda)}$) $\Leftrightarrow (h A(\lambda)) (h A^{*}(\lambda)) K = K (h A^{T}(\lambda)) (\overline{hA(\lambda)})$ \Leftrightarrow hA(λ) is con-k-normal polynomial matrix.

Theorem: 2.5

108

http://www.ijaer.com

(IJAER) 2015, Vol. No. 10, Issue No. V, November

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

If $A(\lambda)$, $B(\lambda) \in \mathbb{C}^{n \times n}$ are con-k-normal polynomial matrices $A(\lambda) B^*(\lambda)K = K$

 $B^{T}(\lambda) \overline{A(\lambda)}$ and $B(\lambda) A^{*}(\lambda)K = K A^{T}(\lambda) \overline{B(\lambda)}$, then $A(\lambda) + B(\lambda)$ and $A(\lambda) - B(\lambda)$ are conk-normal polynomial matrix.

Proof:

Since A(
$$\lambda$$
) and B(λ) are con-k-normal polynomial matrices.
We have A(λ)A^{*}(λ)K = KA^T(λ) $\overline{A(\lambda)}$ ------(1)
and B(λ)B^{*}(λ)K = KB^T(λ) $\overline{B(\lambda)}$ ------(2)
A(λ) + B(λ))(A(λ)+B(λ))^{*}K = A(λ) A^{*}(λ)K + A(λ) B^{*}(λ)K + B(λ) A^{*}(λ)K + B(λ)B(λ)^{*}K
= KA^T(λ) $\overline{A(\lambda)}$ + K B^T(λ) $\overline{A(\lambda)}$ + K A^T(λ) $\overline{B(\lambda)}$ + KB^T(λ) $\overline{B(\lambda)}$
= KA^T(λ) ($\overline{A(\lambda)}$ + $\overline{B(\lambda)}$) + K B^T(λ) ($\overline{A(\lambda)}$ + $\overline{B(\lambda)}$)
= K(A^T(λ) + B^T(λ))($\overline{A(\lambda)}$ + $\overline{B(\lambda)}$)
= K(A(λ) + B(λ))^T ($\overline{A(\lambda)}$ + B($\overline{\lambda}$)

Hence $A(\lambda) + B(\lambda)$ is con-k-normal polynomial matrix. Similarly we can prove, $A(\lambda) - B(\lambda)$ is con-k-normal polynomial matrix.

Theorem: 2.6

If $A(\lambda) \in C^{n \times n}$ is con-k-normal polynomial matrix then $iA(\lambda)$, $-iA(\lambda)$ are con-k-normal polynomial matrix.

Proof:

A(λ) is con-k-normal polynomial => A(λ)A^{*}(λ)K = KA^T(λ)A(λ) $\Leftrightarrow i^{2}(A(\lambda)A^{*}(\lambda)K) = i^{2}(KA^{T}(\lambda)A(\lambda))$

 $\Leftrightarrow (i A(\lambda)) (-(i A(\lambda))^*) K = K (i A^T(\lambda)) (-(i \overline{A(\lambda)}))$ $\Leftrightarrow (i A(\lambda)) (i A(\lambda))^* K = K (i A(\lambda))^T (i \overline{A(\lambda)})$ $\Leftrightarrow i A(\lambda) \text{ is con-k-normal polynomial matrix.}$

Similarly,

we can prove $-iA(\lambda)$ is con-k-normal polynomial matrix.

III. CON-K-UNITARY POLYNOMIAL MATRICES

In this section we have given the definition of con-k-unitary polynomial matrices and obtained its equivalent conditions.

Definition: 3.1

A con-k-unitary polynomial matrix is a polynomial matrix whose coefficient matrices are con-k-unitary matrices.

Example: 3.2

109

http://www.ijaer.com

(IJAER) 2015, Vol. No. 10, Issue No. V, November

$$A(x) = \begin{bmatrix} \frac{i}{\sqrt{2}}x + i & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & i \end{bmatrix}$$
 is a con-k-unitary polynomial matrix.

Here, $A(x) = A_1 x + A_0$

$$= \begin{bmatrix} \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{i} & \mathbf{0} \\ \mathbf{0} & \mathbf{i} \end{bmatrix}, \text{ where } \mathbf{A}_0, \mathbf{A}_1 \text{ are con-k-normal matrices.}$$

Theorem: 3.3

Let $A(\lambda) \in C^{n \times n}$, then the following conditions are equivalent

- (i) $A(\lambda)$ is con-k-unitary polynomial matrix.
- (ii) $\overline{A(\lambda)}$ is con- k-unitary polynomial matrix.
- (iii) $A^{T}(\lambda)$ is con-k-unitary polynomial matrix.
- (iv) $A^{*}(\lambda)$ is con-k-unitary polynomial matrix.
- (v) $hA(\lambda)$ is con-k-unitary polynomial matrix, where h is a real number.

Proof:

The proof is similar to that of theorem 2.4.

Theorem: 3.4

If $A(\lambda)$, $B(\lambda) \in C^{n \times n}$ are con-k-unitary polynomial matrices, then $A(\lambda)B(\lambda)$ is conk-unitary polynomial matrices.

Proof:

A(
$$\lambda$$
) is k- unitary polynomial then A(λ)A^{*}(λ) K = KA^T(λ) $\overline{A(\lambda)}$ = K.
B(λ) is k- unitary polynomial then B(λ)B^{*}(λ)K = KB^T(λ) $\overline{B(\lambda)}$ = K.

$$(A(\lambda)B(\lambda))(A(\lambda)B(\lambda))^{*}K = A(\lambda)B(\lambda) A^{*}(\lambda) B^{*}(\lambda)K$$

= A(\lambda)A^{*}(\lambda) B(\lambda) B^{*}(\lambda)K
= A(\lambda)A^{*}(\lambda)K = K = KA^{T}(\lambda)\overline{A(\lambda)}B^{T}(\lambda) \overline{B(\lambda)}
= KA^T(\lambda) B^T(\lambda) A^{T}(\lambda)B^{T}(\lambda) B^{T}(\lambda) B^{T}(\lamb

Hence $(A(\lambda)B(\lambda))(A(\lambda)B(\lambda))^*K = K(A(\lambda)B(\lambda))^T\overline{A(\lambda)B(\lambda)} = K.$ $A(\lambda)B(\lambda)$ is con-k-unitary polynomial matrix.

Corollary: 3.5

If A(λ), B(λ) $\in C^{n \times n}$ are con-k-unitary polynomial matrices, then B(λ) A(λ) is conk-unitary polynomial matrices.

110

http://www.ijaer.com

(IJAER) 2015, Vol. No. 10, Issue No. V, November

e-ISSN: 2231-5152/ p-ISSN: 2454-1796

Theorem: 3.6

Let $A(\lambda)$, $B(\lambda) \in \mathbb{C}^{n \times n}$. If $A(\lambda)$ and $B(\lambda)$ are con-k-unitary polynomial matrices, then $B(\lambda)A(\lambda)$ is con-unitary polynomial matrices.

Proof:

Since A(λ) and B(λ) is k- unitary polynomial then A(λ)A^{*}(λ) K = KA^T(λ) $\overline{A(\lambda)}$ = K and B(λ)B^{*}(λ)K = KB^T(λ) $\overline{B(\lambda)}$ = K.

From the above two equations, we have

$$\begin{split} A(\lambda)A^{*}(\lambda) \ K \ B(\lambda)B^{*}(\lambda)K &= KA^{T}(\lambda) \ \overline{A(\lambda)} \ KB^{T}(\lambda)\overline{B(\lambda)} = I_{n} \\ &=> \ K \ B(\lambda)B^{*}(\lambda)K = K \ A^{T}(\lambda) \ \overline{A(\lambda)} \ K = I_{n} \\ &=> \ B(\lambda)B^{*}(\lambda) = A^{T}(\lambda)\overline{A(\lambda)} = I_{n} \\ &=> \ B(\lambda)K^{2} \ B^{*}(\lambda) = A^{T}(\lambda) \ K^{2}\overline{A(\lambda)} = I_{n} \\ &=> \ B(\lambda)A(\lambda)A^{*}(\lambda)KK \ B^{*}(\lambda) = A^{T}(\lambda) \ KK \ B^{T}(\lambda) \ \overline{B(\lambda)} \ \overline{A(\lambda)} = I_{n} . \\ &=> \ B(\lambda)A(\lambda)(\ B(\lambda)A(\lambda))^{*} = (\ B(\lambda)A(\lambda))^{T} \ \overline{B(\lambda)} \ A(\lambda) = I_{n} . \\ &=> \ B(\lambda)A(\lambda)(\ B(\lambda)A(\lambda))^{*} = (\ B(\lambda)A(\lambda))^{T} \ \overline{B(\lambda)} \ A(\lambda) = I_{n} . \end{split}$$

REFERENCES

- [1] Indira.R, Subharani.V, On k- normal and unitary polynomial matrices , Int.J. of new tech. Sci. Eng.vol.2, 2015.
- [2] Krishnamoorthy.S, Gunasekaran.K and Arumugam.K, On Con-k-normal matrices., International J.of Current research, Vol.4, 167-169, 2012.