CON-K- NORMAL AND UNITARY POLYNOMIAL MATRICES

*R.Indira, **V.Subharani
*Assistant Professor(Sr.Gr),Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu
** Research Scholar, Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu

ABSTRACT

In this paper we introduce con-k-normal polynomial and con- k-unitary polynomial matrices and study some of its properties.

KEYWORDS:

Con-k-normal polynomial matrix, con-k-unitary polynomial matrix.

I.INTRODUCTION

Let $C^{n \times n}$ be set of all polynomial matrices over the complex field of order n. Let ' k ' be a fixed product of disjoint transpositions in $S_{n}=\{1,2,3 \ldots, n\}$ and K be the associated permutation matrix and $K^{2}=I, K=K^{T}=K^{*}$. Any matrix A is said to be con-k-normal if $A A^{*} K=\overline{K A^{*} A}=K A^{T} \bar{A}$ [2], where \bar{A}, A^{T}, A^{*} denote conjugate, transpose, conjugate transpose of a matrix A respectively. In this paper, we study the concept of con-knormal and unitary polynomial matrices as a generalization of k-normal and unitary polynomial matrices[1].

II. CON-K-NORMAL POLYNOMIAL MATRICES

In this section, we give the definition of the con-k-normal polynomial matrix and some of its basic algebraic properties are studied, as a extension of k-normal polynomial matrices[1].

Definition: 2.1

A con-k-normal polynomial matrix is a polynomial matrix whose coefficient matrices are con-k-normal matrix.

Example: 2.2

$$
\mathrm{A}(\mathrm{x})=\left[\begin{array}{cc}
i x+1 & 1 \\
1 & i x+i
\end{array}\right] \text { is a con-k-polynomial matrix. }
$$

Here, $\mathrm{A}(\mathrm{x})=\mathrm{A}_{1} \mathrm{x}+\mathrm{A}_{0}$

$$
=\left[\begin{array}{cc}
i & 0 \\
1 & i
\end{array}\right] \mathrm{x}+\left[\begin{array}{cc}
i & 1 \\
0 & i
\end{array}\right] \text {, where } \mathrm{A}_{0}, \mathrm{~A}_{1} \text { are con-k-normal matrices. }
$$

Theorem: 2.3

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in C^{n \times n}$ are con-k-normal polynomial matrices and $\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{B}(\lambda) \mathrm{A}(\lambda)$, then $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is a con-k-normal polynomial matrix.

Proof :

Let $\mathrm{A}(\lambda)=\mathrm{A}_{0}+\mathrm{A}_{1} \lambda+\ldots+\mathrm{A}_{\mathrm{n}} \lambda^{\mathrm{n}}$ and $\mathrm{B}(\lambda)=\mathrm{B}_{0}+\mathrm{B}_{1} \lambda+\ldots+\mathrm{B}_{\mathrm{n}} \lambda^{\mathrm{n}}$ be con-k-normal polynomial matrices, $\mathrm{A}_{0}, \mathrm{~A}_{1} \ldots \mathrm{~A}_{\mathrm{n}}$ and $\mathrm{B}_{0}, \mathrm{~B}_{1} \ldots \mathrm{~B}_{\mathrm{n}}$ are con-k-normal matrices. Also given ,
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{B}(\lambda) \mathrm{A}(\lambda)$
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{A}_{0} \mathrm{~B}_{0}+\left(\mathrm{A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}\right) \lambda+\ldots+\left(\mathrm{A}_{0} \mathrm{~B}_{\mathrm{n}}+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}-1}+\ldots+\mathrm{A}_{\mathrm{n}} \mathrm{B}_{0}\right) \lambda^{n}$
$\mathrm{B}(\lambda) \mathrm{A}(\lambda)=\mathrm{B}_{0} \mathrm{~A}_{0}+\left(\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0}\right) \lambda+\ldots+\left(\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}+\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}+\ldots+\mathrm{B}_{\mathrm{n}} \mathrm{A}_{0}\right) \lambda^{n}$
Here each coefficient of λ and constants terms are equal.

$$
\begin{gather*}
\mathrm{A}_{0} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{0} \tag{i.e}\\
\\
\mathrm{~A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0} \\
\Rightarrow \quad \\
\mathrm{~A}_{0} \mathrm{~B}_{1}=\mathrm{B}_{0} \mathrm{~A}_{1} \text { and } \mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{1} \mathrm{~A}_{0} \ldots \\
\Rightarrow \quad \\
\mathrm{~A}_{\mathrm{n}} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}, \mathrm{~A}_{1} \mathrm{~B}_{\mathrm{n}-1}=\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}, \ldots, \mathrm{~A}_{0} \mathrm{~B}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}} \mathrm{~A}_{0}
\end{gather*}
$$

Now we have to prove $A(\lambda) B(\lambda)$ is con-k-normal polynomial matrix.
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]^{*} \mathrm{~K}=\mathrm{A}(\lambda) \mathrm{B}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}$

$$
\begin{aligned}
& =\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{B}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}=\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K} \mathrm{~B}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)} \\
& =\mathrm{K}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)} \mathrm{B}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)}=\mathrm{KA}^{\mathrm{T}}(\lambda) \mathrm{B}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)} \overline{\mathrm{B}(\lambda)} \\
& =\mathrm{K}[\mathrm{~B}(\lambda) \mathrm{A}(\lambda)]^{\mathrm{T}} \overline{\mathrm{~B}(\lambda) \mathrm{A}(\lambda)]}=\mathrm{K}[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)]^{\mathrm{T}} \overline{[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)]} .
\end{aligned}
$$

Hence $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is con-k-normal polynomial matrix.

Theorem:2.4

Let $\mathrm{A}(\lambda) \in C^{n \times n}$, then the following conditions are equivalent:
(i) $\mathrm{A}(\lambda)$ is con-k-normal polynomial matrix.
(ii) $\overline{\mathrm{A}(\lambda)}$ is con- k-normal polynomial matrix.
(iii) $\mathrm{A}^{\mathrm{T}}(\lambda)$ is con-k-normal polynomial matrix.
(iv) $\mathrm{A}^{*}(\lambda)$ is con- k -normal polynomial matrix.
(v) $\mathrm{hA}(\lambda)$ is con-k-normal polynomial matrix where h is a real number.

Proof:

(i) <=> (ii):
$A(\lambda)$ is con-k-normal polynomial $\Leftrightarrow A(\lambda) A^{*}(\lambda) K=K^{T}(\lambda) \overline{A(\lambda)}$

$$
\begin{aligned}
& \Leftrightarrow \overline{\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}}=\overline{\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}} \\
& \Leftrightarrow \overline{\mathrm{A}(\lambda)} \mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{K}=\mathrm{K} \mathrm{~A}^{*}(\lambda) \mathrm{A}(\lambda) . \\
& \Leftrightarrow \overline{\mathrm{A}(\lambda)} \text { is con- k-normal polynomial matrix. }
\end{aligned}
$$

(i) <=> (iii):
$A(\lambda)$ is con-k-normal polynomial $\Leftrightarrow A(\lambda) A^{*}(\lambda) K=K A^{T}(\lambda) \overline{A(\lambda)}$

$$
\begin{aligned}
\Leftrightarrow\left(\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}\right)^{\mathrm{T}} & =\left(\mathrm{K} \mathrm{~A}^{T}(\lambda) \overline{\mathrm{A}(\lambda)}\right)^{\mathrm{T}} \\
\Leftrightarrow \mathrm{~K}^{\mathrm{T}}\left(\mathrm{~A}^{*}(\lambda)\right)^{\mathrm{T}} \mathrm{~A}^{T}(\lambda) & \left.=\overline{\mathrm{A}^{T}(\lambda)} \cdot \mathrm{A}^{T}(\lambda)\right)^{\mathrm{T}} \mathrm{~K}^{\mathrm{T}} \\
\Leftrightarrow \mathrm{~K} \overline{\mathrm{~A}(\lambda)} \mathrm{A}^{T}(\lambda) & =\mathrm{A}^{*}(\lambda) \mathrm{A}(\lambda) \mathrm{K}
\end{aligned}
$$

Pre and post multiply by K on both sides,
$\Leftrightarrow \overline{\mathrm{A}(\lambda)} \mathrm{A}^{T}(\lambda) \mathrm{K} \quad=\mathrm{K} \mathrm{A}^{*}(\lambda) \mathrm{A}(\lambda)$
$\Leftrightarrow A^{T}(\lambda)$ is con-k-normal polynomial matrix.
(i) $\langle=>$ (iv):
$A(\lambda)$ is con-k-normal polynomial $\Leftrightarrow A(\lambda) A^{*}(\lambda) K=K A^{T}(\lambda) \overline{A(\lambda)}$

$$
\begin{aligned}
& \Leftrightarrow\left(\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}\right)^{*}=\left(\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}\right)^{*} \\
& \Leftrightarrow \mathrm{~K}^{*}\left(\mathrm{~A}^{*}(\lambda)\right)^{*} \mathrm{~A}^{*}(\lambda)=(\overline{\mathrm{A}(\lambda)})^{*}\left(\mathrm{~A}^{\mathrm{T}}(\lambda)\right)^{*} \mathrm{~K}^{*} \\
& \Leftrightarrow \mathrm{KA}(\lambda) \mathrm{A}^{*}(\lambda) \quad=\mathrm{A}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)} \mathrm{K}
\end{aligned}
$$

Pre and post multiply by K on both sides,

$$
\Leftrightarrow \mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}=\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}
$$

$\Leftrightarrow A^{*}(\lambda)$ is con-k-normal polynomial matrix.
(i) $<=>$ (v):
$A(\lambda)$ is con-k-normal polynomial $\Leftrightarrow A(\lambda) A^{*}(\lambda) K=K^{T}(\lambda) \overline{A(\lambda)}$
$\Leftrightarrow h^{2}\left(A(\lambda) A^{*}(\lambda) K\right)=h^{2}\left(K^{T}(\lambda) \overline{A(\lambda)}\right)$
$\Leftrightarrow(h \mathrm{~A}(\lambda))\left(\mathrm{hA}^{*}(\lambda)\right) \mathrm{K}=\mathrm{K}\left(\mathrm{hA}^{\mathrm{T}}(\lambda)\right)(\mathrm{h} \overline{\mathrm{A}(\lambda)})$
$\Leftrightarrow(\mathrm{hA}(\lambda))\left(\mathrm{hA}^{*}(\lambda)\right) \mathrm{K}=\mathrm{K}\left(\mathrm{h} \mathrm{A}^{\mathrm{T}}(\lambda)\right)(\overline{\mathrm{hA}(\lambda)})$
$\Leftrightarrow \mathrm{hA}(\lambda)$ is con-k-normal polynomial matrix.
Theorem: 2.5

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in C^{n \times n}$ are con- k -normal polynomial matrices $\mathrm{A}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}=\mathrm{K}$ $\mathrm{B}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}$ and $\mathrm{B}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}=\mathrm{K} \mathrm{A}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)}$, then $\mathrm{A}(\lambda)+\mathrm{B}(\lambda)$ and $\mathrm{A}(\lambda)-\mathrm{B}(\lambda)$ are con-k-normal polynomial matrix.

Proof:

Since $A(\lambda)$ and $B(\lambda)$ are con-k-normal polynomial matrices.
We have $\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}=\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}$
and $\quad \mathrm{B}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}=\mathrm{KB}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)}$

$$
\begin{align*}
\mathrm{A}(\lambda)+\mathrm{B}(\lambda))(\mathrm{A}(\lambda)+\mathrm{B}(\lambda))^{*} \mathrm{~K} & =\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}+\mathrm{A}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}+\mathrm{B}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}+\mathrm{B}(\lambda) \mathrm{B}(\lambda){ }^{*} \mathrm{~K} \tag{2}\\
& =\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}+\mathrm{K} \mathrm{~B}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}+\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)}+\mathrm{KB}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)} \\
& =\mathrm{KA}^{\mathrm{T}}(\lambda)(\overline{\mathrm{A}(\lambda)}+\overline{\mathrm{B}(\lambda)})+\mathrm{KB}^{\mathrm{T}}(\lambda)(\overline{\mathrm{A}(\lambda)}+\overline{\mathrm{B}(\lambda)}) \\
& \left.=\mathrm{K}^{\mathrm{T}}(\lambda)+\mathrm{B}^{\mathrm{T}}(\lambda)\right)(\overline{\mathrm{A}(\lambda)}+\overline{\mathrm{B}(\lambda)}) \\
& =\mathrm{K}(\mathrm{~A}(\lambda)+\mathrm{B}(\lambda))^{\mathrm{T}}(\overline{\mathrm{~A}(\lambda)+\mathrm{B}(\lambda)}
\end{align*}
$$

Hence $A(\lambda)+B(\lambda)$ is con-k-normal polynomial matrix.
Similarly we can prove, $A(\lambda)-B(\lambda)$ is con-k-normal polynomial matrix.

Theorem: 2.6

If $\mathrm{A}(\lambda) \in C^{n \times n}$ is con-k-normal polynomial matrix then $\mathrm{i}(\lambda),-\mathrm{i} \mathrm{A}(\lambda)$ are con-knormal polynomial matrix.

Proof:

$\mathrm{A}(\lambda)$ is con-k-normal polynomial $\Rightarrow \mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}=\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}$

$$
\begin{aligned}
& \Leftrightarrow i^{2}\left(\mathrm{~A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}\right)=\mathrm{i}^{2}\left(\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}\right) \\
& \Leftrightarrow(\mathrm{i} \mathrm{~A}(\lambda))\left(-(\mathrm{i} \mathrm{~A}(\lambda))^{*}\right) \mathrm{K}=\mathrm{K}\left(\mathrm{i} \mathrm{~A}^{\mathrm{T}}(\lambda)\right)(-(i \overline{\mathrm{~A}(\lambda)}) \\
& \Leftrightarrow(\mathrm{i} \mathrm{~A}(\lambda))(\mathrm{i} \mathrm{~A}(\lambda))^{*} \mathrm{~K}=\mathrm{K}(\mathrm{iA}(\lambda))^{\mathrm{T}}(i \overline{\mathrm{~A}(\lambda)}) \\
& \Leftrightarrow \mathrm{iA}(\lambda) \text { is con-k-normal polynomial matrix. }
\end{aligned}
$$

Similarly,
we can prove- $\mathrm{i} \mathrm{A}(\lambda)$ is con-k-normal polynomial matrix.

III. CON-K-UNITARY POLYNOMIAL MATRICES

In this section we have given the definition of con-k-unitary polynomial matrices and obtained its equivalent conditions.

Definition: 3.1
A con-k-unitary polynomial matrix is a polynomial matrix whose coefficient matrices are con-k-unitary matrices.
Example: 3.2

$$
\mathrm{A}(\mathrm{x})=\left[\begin{array}{cc}
\frac{i}{\sqrt{2}} x+i & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & i
\end{array}\right] \text { is a con-k-unitary polynomial matrix. }
$$

Here, $\mathrm{A}(\mathrm{x})=\mathrm{A}_{1} \mathrm{x}+\mathrm{A}_{0}$

$$
=\left[\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right] \mathrm{x}+\left[\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right], \text { where } \mathrm{A}_{0}, \mathrm{~A}_{1} \text { are con-k-normal matrices. }
$$

Theorem: 3.3

Let $\mathrm{A}(\lambda) \in C^{n \times n}$, then the following conditions are equivalent
(i) $\quad \mathrm{A}(\lambda)$ is con-k-unitary polynomial matrix.
(ii) $\overline{\mathrm{A}(\lambda)}$ is con- k-unitary polynomial matrix.
(iii) $\quad \mathrm{A}^{\mathrm{T}}(\lambda)$ is con-k-unitary polynomial matrix.
(iv) $\mathrm{A}^{*}(\lambda)$ is con-k-unitary polynomial matrix.
(v) $\quad \mathrm{hA}(\lambda)$ is con-k-unitary polynomial matrix, where h is a real number.

Proof:

The proof is similar to that of theorem 2.4.

Theorem: 3.4

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in C^{n \times n}$ are con-k-unitary polynomial matrices, then $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is conk -unitary polynomial matrices.

Proof:

$A(\lambda)$ is k- unitary polynomial then $A(\lambda) A^{*}(\lambda) K=K A^{T}(\lambda) \overline{A(\lambda)}=K$.
$\mathrm{B}(\lambda)$ is k - unitary polynomial then $\hat{\mathrm{B}}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}=\mathrm{KB}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)}=\mathrm{K}$.
$(\mathrm{A}(\lambda) \mathrm{B}(\lambda))(\mathrm{A}(\lambda) \mathrm{B}(\lambda))^{*} \mathrm{~K}=\mathrm{A}(\lambda) \mathrm{B}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}$

$$
\begin{aligned}
& =\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{B}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K} \\
& =\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}=\mathrm{K}=\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)} \mathrm{B}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)} \\
& =\mathrm{KA}^{\mathrm{T}}(\lambda) \mathrm{B}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda) \mathrm{B}(\lambda)} \\
& \left.=\mathrm{K}(\mathrm{~A}(\lambda) \mathrm{B}(\lambda))^{\mathrm{T}} \overline{\mathrm{~A}(\lambda) \mathrm{B}(\lambda)}\right)
\end{aligned}
$$

Hence $(\mathrm{A}(\lambda) \mathrm{B}(\lambda))(\mathrm{A}(\lambda) \mathrm{B}(\lambda))^{*} \mathrm{~K}=\mathrm{K}(\mathrm{A}(\lambda) \mathrm{B}(\lambda))^{\mathrm{T}} \overline{\mathrm{A}(\lambda) \mathrm{B}(\lambda)}=\mathrm{K}$.
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is con-k-unitary polynomial matrix.

Corollary: $\mathbf{3 . 5}$

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in C^{n \times n}$ are con-k-unitary polynomial matrices, then $\mathrm{B}(\lambda) \mathrm{A}(\lambda)$ is conk -unitary polynomial matrices.

Theorem: 3.6
Let $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in C^{n \times n}$. If $\mathrm{A}(\lambda)$ and $\mathrm{B}(\lambda)$ are con-k-unitary polynomial matrices, then $\mathrm{B}(\lambda) \mathrm{A}(\lambda)$ is con-unitary polynomial matrices.

Proof:

Since $\mathrm{A}(\lambda)$ and $\mathrm{B}(\lambda)$ is k- unitary polynomial then $\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{K}=\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}=\mathrm{K}$ and $B(\lambda) B^{*}(\lambda) K=K B^{T}(\lambda) \overline{B(\lambda)}=K$.

From the above two equations, we have

$$
\begin{aligned}
\mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{KB}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K} & =\mathrm{KA}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)} \mathrm{KB}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)}=\mathrm{I}_{\mathrm{n}} \\
& \Rightarrow \mathrm{~KB}(\lambda) \mathrm{B}^{*}(\lambda) \mathrm{K}=\mathrm{K} \mathrm{~A}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)} \mathrm{K}=\mathrm{I}_{\mathrm{n}} \\
& \Rightarrow \mathrm{~B}(\lambda) \mathrm{B}^{*}(\lambda)=\mathrm{A}^{\mathrm{T}}(\lambda) \overline{\mathrm{A}(\lambda)}=\mathrm{I}_{\mathrm{n} .} \\
& \Rightarrow \mathrm{B}(\lambda) \mathrm{K}^{2} \mathrm{~B}^{*}(\lambda)=\mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{K}^{2} \overline{\mathrm{~A}(\lambda)}=\mathrm{I}_{\mathrm{n}} \\
& \Rightarrow \mathrm{~B}(\lambda) \mathrm{A}(\lambda) \mathrm{A}^{*}(\lambda) \mathrm{KK} \mathrm{~B}^{*}(\lambda)=\mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{KK}^{\mathrm{T}}(\lambda) \overline{\mathrm{B}(\lambda)} \overline{\mathrm{A}(\lambda)}=\mathrm{I}_{\mathrm{n}} . \\
& \Rightarrow \mathrm{B}(\lambda) \mathrm{A}(\lambda)(\mathrm{B}(\lambda) \mathrm{A}(\lambda))^{*}=(\mathrm{B}(\lambda) \mathrm{A}(\lambda))^{\mathrm{T}} \overline{\mathrm{~B}(\lambda) \mathrm{A}(\lambda)}=\mathrm{I}_{\mathrm{n}} . \\
& \Rightarrow \mathrm{B}(\lambda) \mathrm{A}(\lambda) \text { is con-unitary polynomial matrix, Hence the proof. }
\end{aligned}
$$

REFERENCES

[1] Indira.R, Subharani.V, On k- normal and unitary polynomial matrices, Int.J. of new tech. Sci. Eng.vol.2, 2015.
[2] Krishnamoorthy.S, Gunasekaran.K and Arumugam.K, On Con-k-normal matrices., International J.of Current research, Vol.4, 167-169, 2012.

