
International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 6, Issue No. III, Sept ISSN: 2231-5152

13

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

IN-OUT INTERACTION COMPLEXITY COMPUTATION

FOR COMPONENT BASED SOFTWARE PRODUCTS:

FUZZY APPLICATION

*P.K.Bharti, @Dr. Ajay Agarwal

*Phd Scholar, @Phd Supervisor

ABSTRACT

In the current scenario of software engineering, Component-based software Development (CBSD) is the most

intuitive appeal for developing large and complex software products by integrating pre-engineered, context-

based manipulated, deployable software components. These components provide big advantages for software

development such as shorter development times, better quality of the developed products and better

maintainable software products. And these facilities can be translated into cost savings. This not only

encourages the productivity and overall quality but decreases in time to market and maintain the software

product. Today, the main emphasis of industry and researchers is on developing some impressive and efficient

metrics and measurement tools through which they can minimize the complexity and over burdens arise during

the In-interactions and Out-interactions among the components. In this paper we are proposing some simple

methods and metrics for computing the complexity of composable components. This paper include the

computation of total interactions,

Keywords: CBSD, pre-engineered, context-based manipulated software components, In-Out interactions, and

complexity.

1. INTRODUCTION

1.1 Software Component

Software Component may be defined as software element offering a defined service or event, and able

to communicate with other components of the software. These components can be designed and

developed as either conventional software modules or object-oriented classes or packages of classes. A

component may be:

1.1.1 Qualified component: address to the requirements of the system or product to be built in terms

of functionality, performance, and reliability.

1.1.2 Adaptable components: Able to modify unwanted and undesirable features.

1.1.3 Assembled components: integrated and interconnected into an architecture to allow the

components to be coordinated and managed effectively.

1.1.4 Updated components: existing components must be replaceable as new versions become

available.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 6, Issue No. III, Sept ISSN: 2231-5152

14

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

2. COMPONENT COMPOSITION

A software product can be made up of fully independent components or may be coordinate and

cooperate with existing components. If the component is composable with other components it may

share data, logic, information and other valuable contents. To share these each component should

have: a) Interface, b) Services, c) Deployment techniques.

2.1 Interface: How a component can interact to other components to provide its services. It specifies

what the parameters are what results to expect. It is the way through which coupling is done. It may be

data, content, accidental. Interface is an essential requirement to integrate (couple) two or more

independent components. It work as a protocol among the components when they assembled to

provide their intended goal.

2.2 Services: It includes what type of services it is going to provide to other components, i.e. what is

the use of that component in that particular software. It includes the functionality of that particular

component which is going to integrate with existing or other independent components. Services

includes-

 a) Purpose b) Robust

 c) Reliability d) Efficiency

 e) Performance f) Adaptability

2.3 Deployment Techniques: Deployment techniques include the executable codes of that component

which is used to deploy that component with the codes of other components. Interface provides the

basis for this deployment so that all the codes of all the components can be integrated in one single

executable software to perform its required aim and goal. Deployment includes-

 a) Physical code of new and existing components,

 b) Changes in terms of coding in new and existing components wherever required,

 c) Integration testing and

 d) System testing.

3. PROPOSED INTERACTION COMPLEXITY COMPUTATION

3.1 Integration Complexity

When two or more components are integrated then they must share some interaction between

themselves. We can define two interaction techniques which a component is required during

integration-

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 6, Issue No. III, Sept ISSN: 2231-5152

15

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

a) In Interaction: All the incoming interactions to a component which are requested by other

components to interact with that particular component. These are represented by incoming

edges (arrows).

b) Out Interaction: All the outgoing interactions from a component which are requested by him

to interact with other components. These are represented by outgoing edges (arrows).

3.2 Total Interactions of a component (TI)

Total Interactions of a component may be computed as sum of In-Interactions (Iin) to and Out-

Interactions (Iout) from that component.

Total Interactions of a component

TI = Iin + Iout

3.3 Interaction Ratio of a Component (IR)

Interaction ratio of a component can be computed as total number of In-Interactions (Iin) divided by

total number of Out-Interactions (Iout).

Interaction Ratio of component

IR = Iin / Iout

 In interaction

 Out interaction

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 6, Issue No. III, Sept ISSN: 2231-5152

16

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

3.4 Average Interaction among Components (AI)

Average Interaction among components can be calculated as the ratio of sum of In-Interactions (Iin)

and Out-Interactions (Iout) to the number of components participating in the integration Cn.

Average Interaction among components

AI = (In + Iout)

 Cn

3.5 Interaction Percentage between components (IP%)

Percentage of interaction between components can be given as the ratio of sum of In-Interactions (Iin)

and Out-Interactions (Iout)to the Maximum possible

interactions (Imax) among the components

Interaction Percentage between components

IP% = (Iin + Iout) *100

 Imax

4. DISCUSSION ON PROPOSED COMPUTATION

The primary objectives for component metrics computation include the following:

1. to better understand the interaction of components;

2. to assess the effectiveness of component integration;

3. to improve the quality of integration of components and final products.

A component should be of multiple uses, non-context specific, composable with other components,

encapsulated, and a unit of independent deployment and versioning [Clements Szyperski and David

Messerschmitt].

5. CONCLUSION

Since software components are developed using a compiler-oriented or common compiler based

programming languages that has a limited vocabulary, an explicit grammar and well defined rules of

syntax and semantics. Software components, like the idea of hardware components, should be

interchangeable and reliable. Today modern reusable components encapsulate both data structures and

the algorithms that are applied to the data structures.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 6, Issue No. III, Sept ISSN: 2231-5152

17

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

Nowadays, the biggest challenge is to find ways of cutting the ties that inherently bind programs to

specific computers and to other programs. Developers and Researchers are investigating several

promising approaches, including a common language that could be used to describe software parts,

programs that reshape components to match any environment, and components that have lots of

optional features.

Software reuse is told to provide big advantages for software development such as shorter

development times, better quality of the developed products and better maintainable software products.

And these should translate into cost savings.

6. REFERENCES

1. [Ran01] Nadeesha Ranasinghe, History of Component Based Development,

http://infoeng.ee.ic.ac.uk/~malikz/surprise2001/nr99e/article1

2. Pierre N. Robollard, Philippe Kruchten, with Patrick d’Astous “Software Process with UPEDU”,

ISBN 81-297-0309-2

3. Stephen R. Schach “Software Engineering”, seventh edition, TMH.

4. “Software Engineering A practitioners Approach”, Roger S. Pressman, sixth edition, TMH

International edition.

5. A. Salesh, “Measuring the complexity of component based system architecture”, ieeeeexplore.com,

IEEE(2004).

6. Lalit Kharb and Rejende Singh, “Complexity Metrics for Component oriented software system”,

ACM SIGSOFT software engineering Notes, march 2008, Volume 33, Number2.

7. Nasib S. Gill and Balkishan, “Dependency and interaction oriented complexity metrics of

component based systems ”, ACM SIGSOFT Software engineering notes, January 2008, volume 33

number 2.

