
International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

1

International Journal of Advances in Engineering Research

ABSTRACT
Several shortest path algorithms have been suggested by the researchers and Dijkstra's shortest

path algorithm is the most appropriate one when there is a single source-single destination

problem. Though Dijkstra's algorithm is targeted towards single source-single destination

problem but it considers only the weights or distance between the nodes as a criterion for

selecting the shortest path. Taking the real road networks into consideration, we have suggested

a modification of the Dijkstra's algorithm, the multi-parameter Dijkstra’s algorithm (MPD) that

considers multiple parameters into consideration. Apart from the distance between any two

nodes, it considers factors such as time taken to travel from the source to the destination,

congestion of the route etc. so that the user can select the desired route based on his/her

preferences.

In the implementation part of the algorithm, we have designed a navigation system for

Jaipur that incorporates the multi-parameter aspect. It has been designed for the lay man, so

that he is able to view the shortest path between a source-destination pair, and also the available

bus routes across the specified path. The user can also view the traffic congestion across the

selected route. The navigation system has been designed so that it aids the common man in

navigating across the city.

DESIGN AND IMPLEMENTATION OF MULTI-PARAMETER

DIJKSTRA’S (MPD) ALGORITHM: A SHORTEST PATH

ALGORITHM FOR REAL-ROAD NETWORKS

*NISHTHA KESSWANI,#DINESH GOPALANI

*ASSISTANT PROFESSOR, CENTRAL UNIVERSITY OF RAJASTHAN, INDIA

#ASSISTANT PROFESSOR, MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR.

I. INTRODUCTION

With the development of geographic information systems (GIS) technology, network and

transportation analysis within a GIS environment have become a common practice in many

application areas. A key problem in network and transportation analysis is the computation of

shortest paths between different locations on a network. Sometimes this computation has to be

done in real time. For the sake of illustration, let us have a look at the case of a 108 call

requesting an ambulance to rush a patient to a hospital. Today it is possible to determine the

fastest route and dispatch an ambulance with the assistance of GIS. Because a link on a real road

network in a city tends to possess different levels of congestion during different time periods of a

day, and because a patient's location can not be expected to be known in advance, it is practically

impossible to determine the fastest route before a 108 call is received. Hence, the fastest route

can only be determined in real time. In some cases the fastest route has to be determined in a

few seconds in order to ensure the safety of a patient. Moreover, when large real road networks

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

2

International Journal of Advances in Engineering Research

are involved in an application, the determination of shortest paths on a large network can be

computationally very intensive [3]. Because many applications involve real road networks and

because the computation of a fastest route (shortest path) requires an answer in real time, a

natural question to ask is: Which shortest path algorithm runs fastest on real road networks?

There are several algorithms mentioned in the literature [1,2] like Dijkstra’s algorithm

which is a single source- single destination shortest path algorithm, Bellman-Ford algorithm

aimed to solve single source shortest path algorithm, A* search algorithm solves single pair

shortest path problems using heuristics, Floyd Warshall algorithm and Johnson’s algorithm find

all-pairs shortest path and Perturbation algorithm finds locally shortest path.

Several modifications of Dijkstra’s algorithm like Dijkstra’s algorithm with buckets,

Dijkstra’s algorithm with double buckets, Dijkstra’s algorithm with approximate buckets have

also been suggested in [3]. We have proposed a modified version of Dijkstra’s algorithm, a multi-

parameter Dijkstra’s algorithm (MPD).As compared to other state-of-the-art shortest path

algorithms, this algorithm use multiple parameters such as distance, cost and congestion across

the routes. The overhead of using buckets in other versions of Dijkstra’s has been overcome in

the proposed algorithm.

Using the proposed algorithm, a navigation system for Jaipur city has been suggested by

us. The database for Jaipur city was created and graph has been generated from the database.

From the graph, the shortest path was calculated and the results were displayed. In the navigation

system that has been designed by us, the user can view the shortest path, the bus routes that are

available for Jaipur Bus and the congestion across the routes. The congestion factor varies on a

scale of 1 to 10. Higher the value of congestion factor, higher is the traffic congestion across the

specified route.

II. SHORTEST PATH ALGORITHMS: A STATE-OF-THE ART

There are several shortest path algorithms. The shortest path algorithms can be classified

into following categories:

1. Single source shortest path algorithms: Find shortest path from source vertex to all other

vertices in the graph

2. Single destination shortest path algorithms: Find shortest path from all vertices to a

single destination. This can be reduced to single source shortest path problem by

reversing the edges.

3. All-Pairs shortest path algorithms: Find shortest path between every pair of vertices.

During the initial stages of the project, following shortest path algorithms were reviewed:

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

3

International Journal of Advances in Engineering Research

Dijkstra's algorithm[1]: which is a single source-single destination shortest path problem

Bellman-Ford algorithm [1]: aimed to solve single source shortest path problem in which

edge weights may be negative.

A* search algorithm [4]: single pair shortest path algorithm using heuristics.

Floyd Warshall algorithm [2]: solves all-pairs shortest paths.

Johnson's algorithm [4]: solve all-pairs shortest path problem.

Perturbation [4]: finds locally shortest path.

Dijkstra’s algorithm [1] solves the single source shortest path problem. It finds the path

with lowest cost between a vertex and every other vertex. Another very common algorithm is

Bellman Ford algorithm [1] that computes single source shortest path in a directed graph. If a

graph contains a negative cycle i.e. a cycle with sum of edges equal to a negative value, then

walks of arbitrarily low value can be constructed. Bellman ford algorithm can detect negative

cycles, but cannot produce a correct answer if a negative cycle is reachable from the source. This

algorithm is similar to Dijkstra’s algorithm but it relaxes all the edges and the minimum distance

is propagated throughout the graph.

Another algorithm A* search [4] uses greedy best first search and finds least cost path

from a given initial node to a goal node. This algorithm uses distance and cost heuristic function

f(x) to determine order in which search visits nodes in the tree. The distance-plus-cost heuristic is

the sum of two functions:

(i) Path-cost function g(x) – cost from starting node to current node

(ii) Admissible “heuristic estimate” h(x) of the distance to the goal

h(x) part of f(x) must be admissible heuristic i.e. it must not overestimate the distance to

the goal. Thus h(x) might represent straight line distance to goal since it is physically the

smallest possible distance between any two nodes. If heuristic h satisfies the additional condition

for every edge x,y of the graph (where d(x,y) denotes the length of that edge, then h is called

monotone or consistent.

No node needs to be processed more than once and A* is thus equivalent to Dijkstra’s

algorithm with reduced cost

A* takes into account distance already travelled, not simply the local cost from previously

expanded node. Starting with the initial node, it maintains a priority queue of the nodes to be

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

4

International Journal of Advances in Engineering Research

traversed known as an open set. Lower the f(x) for a given node x, higher its priority. At each

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

5

International Journal of Advances in Engineering Research

step, the node with lowest f(x) is removed from the queue. The values of f and h of the neighbors

are updated accordingly and these neighbors are added to the queue. The algorithm continues

until a goal node has lower f value than any node in the queue. The algorithm may also update

each neighbor with its predecessor; this information can be used to reconstruct the path by

working backwards from the goal node.

Another shortest path algorithm is Floyd Warshall algorithm [2] for finding shortest path

in a weighted graph with positive and negative edge weights. Single execution of the algorithm

finds lengths of all the shortest paths between all pairs of vertices. This algorithm incrementally

improves the estimate on shortest path between two vertices, until the estimate is optimal. There

can be two candidates for shortest path:

(i) True shortest path that uses vertices in the set {1,2,….k} or

(ii) There exists some path that goes from I to k+1 then from k+1 to j. Best path from I to j

uses vertices 1 through k is defined by the shortest path(I,j,k) defined by the

following formula:

Johnson’s algorithm [4] finds the shortest path between all pairs of vertices in a sparse

directed graph. It allows some edge weights to be negative numbers but no negative weight

cycles may exist. Perturbation theory [4] comprises mathematical methods that can be used to

find an approximate solution to a problem which cannot be solved exactly by starting from exact

solution of a related problem. The problem can be formulated by adding a small term to the

mathematical description of the exactly solvable problem. In this theory, desired solution can be

expressed in some power series. The leading term is the solution of the problem while further

terms describe the derivation of the solution.

A study of fastest shortest path algorithms has been given in [3]. The researchers have

identified a set of three shortest path algorithms that run fastest on real road networks. These

algorithms are 1) the graph growth algorithm implemented with two queues, 2) Dijkstra

algorithm implemented with double buckets and 3) Dijkstra algorithm implemented with

approximate buckets. Recent evaluations of shortest path algorithms like Zhan and Noon’s

evaluation have also been mentioned.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

6

International Journal of Advances in Engineering Research

III. MULTI-PARAMETER DIJKSTRA’S (MPD) ALGORITHM

Several algorithms available in literature [1, 2, 3, 4] provide solution to the shortest path

problem. After conducting extensive research on the existing shortest path algorithms, it was

observed that Dijkstra's shortest path algorithm is the most appropriate for calculating shortest

paths in real-road networks as it involves calculation of shortest path between single source-

single destination pair. But it needs to be modified to introduce several other factors in the real-

life scenario. Factors such as the time taken to travel, the monetary cost and congestion factor

must also be considered before implementing the algorithm to calculate the optimal paths. The

proposed algorithm incorporates these parameters for an efficient calculation of the shortest path.

Algorithm1: Multi-parameter Dijkstra’s algorithm

Algorithm MPD(Graph,source,destination,choice)

1. begin

2. for each vertex v in Graph do

3. alternate_path[i]:=NULL;

4. dist[v] := infinity;

5. weight_update(choice);

6. for each vertex v in Graph do

7. if v= source or v = destination then

8. for each neighbour u of v do

9. if alternate_path[i] > dist[u] + distance(u,v) then

10. alternate_path[i]:= dist[u] + distance(u,v);

11. end if

12. end for

13. end if

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

7

International Journal of Advances in Engineering Research

14. end for

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

8

International Journal of Advances in Engineering Research

15. end

//choice indicates parameters such as time, distance, cost, congestion

Algorithm 2: Incorporate the multiple parameters

Algorithm weight_update(choice)

1. begin

2. if choice = distance then;

3. else if choice = time then

4. distance := distance * time factor;

5. else

6. distance := distance * congestion factor;

7. return distance;

8. end;

As compared to other state-of-the-art algorithms this multi-parameter version allows the

user to select one or more parameters such as distance, time or congestion. The distance factor

indicates the actual distance between any two nodes in real-time scenario. The time factor

indicates the time taken to travel from one node to another and congestion factor varies on a

scale of 1 to 10 where 1 indicates a low and 10 indicates a high level of congestion. The flow of

the algorithm is indicated in Figure 1.1.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

9

International Journal of Advances in Engineering Research

The Multi-parameter Dijkstra’s algorithm has been tested on Jaipur city database and it

has been found that it is capable of displaying not only multiple routes but the optimal path

between any source-destination pair. Also, the incorporation of congestion factor provides

greater flexibility to the user so that he/ she can choose a route that is less congested.

The proposed algorithm has been compared to the existing algorithms. Several

modifications of Dijkstra’s algorithm have also been proposed by the researchers [3] such as

Start

Read input

data from the

database

No

Is all the

data

retrieved?

Add information

retrieved from

the database to

the graph

Calculate

shortest

path

Display

results

Stop

Figure 1: Implementation of the multi-parameter Dijkstra’s algorithm

IV. EXPERIMENTAL RESULTS

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

10

International Journal of Advances in Engineering Research

Dijkstra’s algorithm with buckets (DKB), Dijkstra’s algorithm with double buckets (DKD),

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

11

International Journal of Advances in Engineering Research

Dijkstra’s algorithm with overflow bag implementation (DKM), Dijkstra’s algorithm with

approximate buckets implementation (DKA). In the study of the modifications of Dijkstra’s

algorithms, it was found that:

 Nodes may be: unlabelled, temporarily labelled or permanently labelled in all of the

proposed algorithms.

 The bottleneck was that all the nodes have to be visited to select the node with min

distance

 In Dijkstra's algo with buckets (DKB) nodes are sorted by distance labels. Bucket k stores

all temporarily labelled nodes whose distance is within a certain range. Requires nC+1

buckets where C= max arc length of a network

 Memory requirement in DKB can be reduced using either Overflow bag implementation

(DKM) or approximate buckets implementation(DKA).

 DKM maintains a<C+1 buckets. Only temporarily labeled nodes whose distance labels

fall in the range[a(i),a(i)+a-1] are contained in ith bucket. Other nodes are maintained in

overflow bag

 DKA: a bucket i contains temporarily labelled nodes with distance in the range

[i*b,(i+1)*b-1] where b= constant. Approximate means that values of distance labels in a

bucket are not exactly the same as DKB

 Dijkstra's algorithm with double buckets (DKD): maintains two levels of buckets, high

level and low level. Nodes in low level buckets are examined and when all low level

buckets are scanned, high level buckets are moved to low level.

When compared to these algorithms, the proposed multi-parameter version was found to

be more efficient due to the following reasons:

• Naïve Dijkstra’s algorithm: uses only one parameter i.e. distance, whereas the multi-

parameter version provides multiple parameters such as distance, cost and congestion.

• Dijkstra’s algorithm with Buckets: maintains nC+1 buckets. It requires extra overhead of

sorting the nodes by distance labels so that bucket k stores all the nodes whose distance

labels fall within a certain range. There is no such overhead in the proposed algorithm.

• Dijkstra’s algorithm with Double Buckets: requires extra space for storing the two levels

of buckets whereas no such requirement is there in the proposed algorithm.

• Dijkstra’s algorithm with overflow bag: requires maintenance of the overflow bag. No

such overhead is there in the proposed algorithm.

In order to test the algorithm, a database for Jaipur city with 500 nodes has been created.

The schema of the database has fields source, destination, distance and congestion. The arc to

node ratio typically varies between 2 and 3. Though, due to the limitation of the availability of

the data, more than two routes have not been considered. A navigation system was designed that

used the Multi-parameter Dijkstra’s algorithm to calculate the shortest path.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

12

International Journal of Advances in Engineering Research

The user interface provides following facilities to the user:

 Browse all routes

 Browse bus routes

 Display Traffic congestion among all the routes

 Display Traffic congestion across some specific routes

 Get the shortest path between a source-destination pair and also the bus routes that are

available across the shortest path

Table1: Comparison of MPD with other modifications of Dijkstra’s algorithm

S.No. Criteria Algorithm Comparison with MPD

1. Number of

parameters

Dijkstra’s

Algorithm

Considers only one parameter

as compared to MPD that uses

multiple parameters

2. Space and time Dijkstra’s

Algorithm with

Buckets (DKB)

1. More space required for

nC+1 buckets

 2.Extra time required for

sorting buckets

MPD does not have any such

overhead

3. Space Dijkstra’s

Algorithm with

Double

Buckets(DKD)

Requires extra space for two

levels of buckets.

No such requirement in MPD

4. Accuracy Dijkstra’s

algorithm with

Approximate

Buckets (DKA)

Makes approximation about

the distance labels stored in a

bucket that are within a certain

range and this can lead to

approximate results about the

shortest path.

5. Space Dijkstra’s

Algorithm with

Overflow bag

(DKM)

Requires maintenance of the

overflow bag. No such

overhead is there in the

proposed algorithm.

The dependence of various parameters was studied and it was observed that the distance

travelled is proportional to the number of nodes traversed as shown in Figure 2.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

13

International Journal of Advances in Engineering Research

Figure 2: Number of nodes v/s distance travelled

Again it was observed that the traffic congestion across various routes was independent

of the number of nodes as some nodes were more congested than others. The results are

indicated in Figure 3.

Figure 3: Number of nodes v/s traffic congestion

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

14

International Journal of Advances in Engineering Research

V. CONCLUSIONS AND FUTURE WORK

With the advancement of GIS technology and the availability of high quality road

network data, it is possible to conduct transportation analysis concerning large geographic

regions within a GIS environment. Sometimes, this type of analysis has to be completed in real

time. As a consequence, these analysis tasks demand high performance shortest path algorithms

that run fastest on real road networks.

The navigation system provides a user-friendly interface. It not only allows the user to

browse most of the routes in the city, but also provides details about the distances and congestion

of the routes. As compared to other contemporary algorithms, it provides multiple parameters

like distance, time and congestion, out of which the user can choose one. The user can also view

the best available route between a source-destination pair. During the design process some

assumptions have been made such as the congestion factor may vary in real time scenario and

may be affected by traffic jams etc. Also while calculating the time it is assumed that the user

would move towards the desired destination, without any stoppages in between. In the bus

routes, it is assumed that buses are always available at the node when the passenger arrives, the

arrival time of the buses has not been taken into consideration.

REFERENCES

[1] Thomas H. Cormen, Charles E.Lieserson, Ronald L. Rivest, Clifford Stein,

“Introduction to Algorithms”, Prentice Hall of India, 2009.

[2] Anany Levitin, “Introduction to the design & analysis of algorithms”, Pearson

Education, Second Edition, 2009.

[3] F.Benjamin Zhan,”Three Fastest shortest path algorithms on Real-road networks”,

Journal of Geographic information and decision analysis, 2010, Vol. 1, No.1, pp.69-82.

[4] Shortest path algorithms, Wikipedia, the free encyclopedia,

http://www.en.wikipedia.com.

[5] The Dublin Bus Navigator, http://www.iol.ie/~aidanh/dubbus/onebus/a.htm#1

[6] Mumbai Navigator, http://www.cse.iitb.ac.in/navigator1/index.html

[7] Ioannis Delikostidis & Corné P.J.M. van Elzakker,”User-Centered mobile navigation

system interface development for improved personal Geo-identification and navigation”.

[8] David Betaille,” Creating enhanced Lane level vehicle navigation”, IEEE Transactions on

Intelligent transportation systems 2010, Vol. 11, Issue 3.

[9] Maps at www.mapsofindia.com Google maps www.maps.google.co.in

[10] Java Server Programming, Black Book, Kogent Solutions Inc., 2009.

[11] The Complete Reference, Java, Seventh Edition, Herbert Schildt, Tata McGrawHill

Publishing Company, 2009.

[12] Giorgio Gallo, Stefano Pallottino , “Shortest path algorithms”, Annals of Operations

http://www.ijaer.com/
http://www.en.wikipedia.com/
http://www.iol.ie/~aidanh/dubbus/onebus/a.htm#1
http://www.cse.iitb.ac.in/navigator1/index.html
http://www.mapsofindia.com/
http://www.maps.google.co.in/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

15

International Journal of Advances in Engineering Research

research, Springer, Volume 13, Number1, pp. 1-79, 2009.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com/

(IJAER) 2011, Vol. No. 2, Issue No. III, September ISSN: 2231-5152

16

International Journal of Advances in Engineering Research

[13] Stuart E. Dreyfus, “An Appraisal of Some Shortest-Path Algorithms”, Operations

Research, 2009, Vol.17, No. 3 pp. 395-412.

[14] F.Benjamin Zhan, Charles E. Noon, “Shortest path algorithms: an evaluation using real

road networks”, Transportation Science, Vol.32, No. 1, February 2008.

[15] Narsing Deo, Chi-Yin Pang, “Shortest path algorithms: Taxonomy and Annotation,

Networks, Wiley, Vol.14, Issue 2, pp.275-323, 2006.

[16] Steffano Pallotino, “Shortest path algorithms in transportation models: classical and

innovative aspects”, Technical Report: TR 97-06.

http://www.ijaer.com/

