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ABSTRACT

The aim of this work is to estima

cost. For that, we propose an orig 3 i the Polynomial Chaos Expansion
PCE with Component Mode Synth i S method proved to be effective in
reducing the size of the problem, wh

these methods are de stic and do not allow us to consider the uncertainties present in such
structures. Indeed, due0 the manufacturing process, there is dispersion on the values of physics
parameters, so the latter can be considered as random. Also for a robust design objective, it is
necessary to integrate these variations to estimate the associated nonlinear random response.

One of the classic methods for taking into account uncertainties is the Monte Carlo Simulations
(MCS) [1]. This method, based on the resolution of simulations for different values of the random
parameters, requires many realisations and it is expensive in computation time. As a result, other
methods have been developed. Perturbation methods based on a development in Taylor series of
second order [2] and Neumann expansion method [3] are generally efficient. Another development in
the first order [4] gives similar results to the previous developments with a reduced time computing.
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Furthermore, another form of development is a Polynomial Chaos Expansion (PCE) [5,6]. The
stochastic solution may be expanded in terms of the polynomial chaos basis whose elements are
obtained from orthogonal polynomial [7]. The properties of this polynomial basis are used to generate
a system of deterministic equations. The resolution of this system is used to determine the variability
of the response.

However, nonlinear dynamics, the large number of degrees of freedom due to the mesh of a large
structure and higher order developing for modeling uncertainty induced a considerable increase of
deterministic equations.

One way to solve this problem is the reduction by Component bMesieaSynthesis (CMS) method

i number of degrees of

et al [16] proposed a

comparative study of different bases for reduction in nonlinga 1 res. Thus, in the CMS
method, the overall structure is divided into sub-structu

eqllency transfer functions
19] proposed for simple

his, we de¥€lop a methodological approach for calculating
ps with uncertain parameters. This approach is based on

ment” FE method is adopted. Then, the temporal integration by
we take the random phenomena using the PCE method. The

optimally reduce th el size. The first moments of the nonlinear dynamic response of the reduced
system are compared e entire system. Several numerical simulations have shown the accuracy
and efficiency of proced#fes and methodologies developed

REDUCTION BY COMPONENT MODE SYNTHESIS METHOD

The CMS method consists in using simultaneously a sub-structuring technique and a reduction
method. The large and complex structure is partitioned in sub structures. Each sub-structure is
represented by a reduced basis composed of the normal modes and the interface modes. We present
the theoretical bases of the CMS method. Initially the eigenmodes and the interface static
deformations are given for each sub-structure. Then the overall system is projected on these bases
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taking into account the interface couplings between the sub-structures, after the reduced system is
solved. Finally the complete system solution is reconstituted.

The finite element model of the entire structure is partitioned into N substructures SS(i) (i=1,..., N).
The equations of motion for each non- linear substructures SS(i) are:

(MG} + [CTH{w} + [KT{u} + {Fu} = {E} 1)

With[M], [C]* and [K]' are respectively the mass matrix, the d
matrix for substructures SS(i).

The displacement vector {u}' is partitioned into a vector {u]-}1
the vector of internal DOF-:

The external force vector {F.}' is composed : ! Jalled interface force
and external applied force.

(Rl = (F,;) +{F.}

The non linear force vector {F,; [ and {F,. }', called interface force
and external non linear force.

(4)
ds, the physical displacements of the substructure SS(i) are
bstructure modes. After some algebraic transformations, a

With np(i) are the i#8d coordinates. The matrix [Q]® is defined according to the method of

sub structuring used (fixg# or free interface [10]).

The conservation of interface DOF allows assembling these matrices as in the ordinary finite
element methods. Let us denote by {u.} the vector of independent displacements of the assembled

structure:
My €3]
ud=1 (6)
Mp
Uy )
The compatibility of interface displacements of the assembled structure is obtained by writing for
36

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH




International Journal of Advances in Engineering Research http://www.ijaer.com
(NAER) 2016, Vol. No. 12, Issue No. 1V, October e-1SSN: 2231-5152, p-ISSN: 2454-1796

each substructure SS(i) the following relation:

{uc} = [B1"{uc} ()
Where [B]' is the matrix of localization or of geometrical connectivity of the SS(i) substructure. It
makes possible to locate the DOF of each substructure SS(i) in the global DOF of the assembled
structure. They are the Boolean matrices whose elements are 0 or 1.

A transformation matrix can be defined for each substructure SS(i) by:
[Z]" = [QI'[B] (8)

Where [Q]' is given by the considered CMS method.

The displacement vector {u}® are then given by

W = [2]"{w}

Inserting Eq. (9) into Eq. (1) and multiply on the 4 5 :
the following equation is obtained:

[M 1t} + [C{} + [K J{ud + ZX

Ly 20 ((Fag) + (Fuel) = By [20(F e

In this section, the Polynomial Chaos Expansion and the CMS approaches, presented in the
previous sections, will be coupled in order to analyze the dynamic behaviours of structures with
uncertain parameters. Based on the CMS, the reduced random differential system to be solved is
equation (13)

In the following, the physical properties of each substructure SS® described by the mass, damping
and stiffness matrices are assumed to be uncertain.[M]¢, [C]* and [K]} are random matrices. The
transformation matrix [Z]* can be defined assuming that the model is deterministic. The present
analysis will assume that all random variables obey a normal distribution.
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Using a particular formulation of the stochastic finite element method the matrices [M],[C]
and[K]can be represented in the form:

[K]' = TR olKel . & [C] =X 0lC) &, [M]' =
Yom—olMi]" . & (14)

i i
The external vector force is: {F,}' = Xf_, {F;, f} &

$kr €cr Em and &f are the random variables
The condensed mass, damping, stiffness matrices and vector fq en:

[Mc] = rMn=0[Mcm] m gzO[Ccc] e P:ec} = Z?:O{Fecf} ff
(15)

With ;
M ] = XL, 2] M, ]'[Z])
(K] = 2 “[2) [Ke ] (2]

N
©) = ) (O} (E3%)
n=0

o Y(&) are j ional Hermit orthogonal polynomials in the random variables ¢;
defined by:

0" (5 "EHED

08, v wnn, 08,
o u,(t),u,(t) and ii,(t) denote a vector determinist coefficients.

1
Y S e e $p) = (= 1) expilly $G31t3))

The temporal response from time 0 to time T of equation (13) is required. The time T is subdivided
into n intervalsAt = gand the numerically solution is obtained at timest, =r.Atr € INand0 <r <

n Assuming that the solutions at times t are known and that the solution at time (t + At) is required
next. According to the Newmark method, the following assumption is used at time (t + At):
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{iic (t + A8)} = ao({uc (¢ + AD} — {u(0)}) — ar{u ()} — as{i ()}
{uc(t + A0)} = {u. (0} + aelit. ()} + az{ii(t + AD)}
(17)

In which,the following notations are used:

s
% = Y02

as = (AD)(1 —6)
The two parameters « and §, verify § > 2
solution

In order to obtain the displacement, veloc
following equation of motion is considered:

is

(19)

O — a{Fnl}l
Jdu

[Knl]
{w={u3®
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{Foge } = (Foc (¢ + A} + [M] (a0 {uc (0} + ap {2 (D} + as{it. (D)
+ [Ccl(ar{uc (D} + as{u (O} + as{iic (D)

Solving Eq. (19) for {u.(t + At)} the corresponding velocity and acceleration solutions{u,. (t +
At anduct+A ¢ can be directly computed using Egs. (17). Based on Egs. (15) the random equivalent

matrix [K,, | and vector {F,,, Jare explicitly given by:
K

M
[Keqc] = Z[ch] -fk + +[Knlc] + Qo ( [Mcm] 'fm
m=0

k=0

+a; (i[@c]-fe)

c=0

F M
{Feqc} = Z{Fecf (t + At)} Ef + z [Mcm] .
f=0 m=0

Cc N
+ ) [Cecl . ) (@1 {0} + sl (0} +
c=0 n=0

Substituting Egs. (20) and (21) into Eq. (19)
approximating space spanned by the Hermite polyn
equation:

K N
z Z Uy (t + At) [ch] -hknm +
k=0n=0
N

M C N
/ . +a (Z D (e + A0 [Ce] -hcnm>

c=0n=0

(22)

N
[Coc ) (@1t () + @i (O} + ity (O)
n=0

c=0
hinm = (& W, )is the inner product defined by the mathematical expectation operator.

Using matrix notations the resulting algebraic system can be rewritten as:
H{U(t + A} = H{Foc(t + A} + Ho{U (0} + Hs{U (O} +  Ho{U ()}
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where {U, ()}, {U.(®)}, {U.(6)} and {F..(t)}are extended solution vectors containing w1, i, and
fe +as follows:
Up

Uy

1:10 uo] (feo\

Wl [w] [
wit (0} ={ ¢+ 0} =1 4 b WI=14,

B I

[y = D (Kl iy + e KEth) + g

[Z]'{U.(t + A6)} (24)
(t + At)}are given directly by:

(t + AD)}) = [Z]{uo(t + AD)} (25)
varflu(t + AD)Y) = [Z]" Xy {u, (¢ + ADYA (Y, ) (26)

These relationships give a methodological approach coupling the polynomial chaos expansion and
any required CMS method. In this paper the free and fixed CMS methods will be tested. These
approaches permit to take advantage of the order reductions of the CMS as well as of the polynomial
chaos to handle uncertainties in order to solve a large non linear stochastic dynamic structure.
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NUMERICAL EXAMPLE

For non linear discrete systems with stochastic parameters, some benchmark tests are elaborated to
demonstrate the efficiency of the methodological approach. The presented method can be applied to
continuous or discrete systems. In this article we restrict ourselves to show the applicability and
effectiveness of these methods for the dynamic analysis of nonlinear discrete systems with N DOF. A
non linear dynamic system consisting of 20 masses connected by 21 springs nonlinear shown in Fig. 1.
This structure will be divided into two substructures SS (1) with 11 internal DOF and SS (2) with 8
internal DOF, and one DOF of junction the mass m/2. The starting eg DDOF will be condensed
and will bring to the resolution of a 10-DOF equation, divided igf® DOF, 5 modes free or
fixed interfaces of SS (1) and 4 modes free or fixed interfaces &

The following characteristics are considered:

e Massim; =m, =--=my, =2kg
e Linear stiffness:k; = k3 = - = k3g = kyq
e Non linear cubic stiffness: k, = k, = -+

The initial conditions are:
e {u.}=1{0,000,0,0.500,0,0}
e {u.}=1{0,0,0,0,00,0,0,0,0}

is a zero mean value Gaussian random variable m, =
b0 is the standard deviation of this parameter. Firstly, the

simulation 900 simulations.

ed on the coupling of the PCE method with Component Mode

od. This approach allows reducing the size of the problem and the

computational cost tal mean and variance of the magnitude of displacement have been shown
in Figures 2, 3, 4and 5. can see that the different methods provide very similar results.
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s

k3?1 kﬂ

Figurel. Decomposed struc

Monte Carlo Simulation+ Whole structure
PCE ordre2 + Whole structure

PCE ordre2 + Free interface CMS method
PCE ordre2 + Fixed interfface CMS method |7

Mean displacement of uz(m)

Figure.2. The

Monte Carlo Simulation+ Whole structure
PCE ordre2 + Whole structure

PCE ordre2 + Free interfface CMS method
PCE ordre2 + Fixed interface CMS method

variance of disp!

Time (s)

Figure.3. The variance of temporal displacement for m,, Monte Carlo Simulation with 900 samples, PCE with complete
structure and with (CMS) methods free interface and fixed interface, &,, = 3%
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TABLE 1:CPU time (s) comparison for stochastic time response for m,

MCS with PCE ordre2 with PCE ordre2 with free PCE ordre2 with fixed
whole structure whole structure interface CMS method interface CMS method
CPU Time (s) 112.001801 1.593684 1.351902 1.314507

Monte Carlo Simulation+ Whole structure ||
PCE ordre2 + Whole structure

PCE ordre2 + Free interface CMS method
PCE ordre2 + Fixed interface CMS method

Mean displacement of u(19) (m)

Fig.4. The mean of temporal cement for myg, Mon ulation with 900 samples, PCE
with complete structure and with ods free interfac fixed interface, &, = 3%

Monte Carlo Simulation+ Whole structure
— PCE ordre2 + Whole structure

PCE ordre2 + Free interfface CMS method

PCE ordre2 + Fixed interface CMS method

ariance of displacement f

6 7 8 9 10
Time (s)

Fig.5. The variance of temporal displacement for m;; Monte Carlo Simulation with 900 samples,
PCE with complete structure and with (CMS) methods free interface and fixed interfaceé,, = 3%.

CONCLUSION

The main of this work is to provide the variability of the transient solution of a large and complex
structure by considering geometric nonlinearities. We have achieved this by implementing an
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integrated approach, the coupling PCE method, CMS reduction method and temporal integration. The
PCE method was used to model the uncertainty parameters, the stochastic solution may be expanded
in terms of the polynomial chaos basis whose elements are obtained from Hermit orthogonal
polynomial. We developed the CMS method in the nonlinear case for reducing the finite element
model. The implementation of the temporal integration by Newmark schema has allowed us to
establish the variability of the solution for nonlinear reduced model with uncertain parameters. We
could solve the problem of calculating the tangent matrix. The numerical tests show the accuracy of
the results and minimization of cost calculation, thus validating this approach.
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